Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina.

نویسندگان

  • Paul Hahn
  • Tzvete Dentchev
  • Ying Qian
  • Tracey Rouault
  • Z Leah Harris
  • Joshua L Dunaief
چکیده

PURPOSE CNS iron accumulation is associated with several neurodegenerative diseases, including age-related macular degeneration. Intracellular overload of free iron is prevented, in part, by the iron export protein, ferroportin, and the iron storage protein, ferritin. The purpose of this study was to assess retinal localization and regulation of ferroportin and ferritin. METHODS Normal murine retinas were analyzed by immunohistochemistry to localize ferroportin, cytosolic ferritin, and mitochondrial ferritin, with double-labeling using cell-specific markers to identify cell types. Retinas deficient in the ferroxidases, ceruloplasmin and hephaestin, accumulate iron in their retinas and RPE, while retinas deficient in iron regulatory proteins (IRPs) lack the ability to regulate several proteins involved in iron metabolism; retinas from these knockout mice along with their age matched wild type littermates were also examined to study regulation of ferritin and ferroportin. To enable visualization of label in the retinal pigment epithelial cells, sections from pigmented mice were bleached with H2O2 prior to IHC, a novel use of this technique for study of the RPE. RESULTS In normal retinas, cytosolic ferritins were found predominantly in rod bipolar cells and photoreceptors. Ferroportin was found in RPE and Müller cells. Iron accumulation in mice deficient in ceruloplasmin and hephaestin was associated with upregulation of ferritin and ferroportin. Mice deficient in IRPs showed upregulation of ferritin and ferroportin, likely because of their inability to repress translation. CONCLUSIONS Normal retinas contain ferritin and ferroportin, whose levels are regulated by iron-responsive, iron regulatory proteins. Ferroportin colocalizes with ceruloplasmin and hephaestin to RPE and Müller cells, supporting a potential cooperation between these ferroxidases and the iron exporter. Cytosolic ferritin accumulates in rod bipolar synaptic terminals, suggesting that ferritin may be involved in axonal iron transport. Mitochondrial ferritin increases with iron accumulation, suggesting a role in iron storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong labeling for iron and the iron-handling proteins ferritin and ferroportin in the photoreceptor layer in age-related macular degeneration.

Age-related macular degeneration (AMD) is the leading cause of legal blindness among people 65 years and older. The cause of AMD is unclear, but oxidative stress may play a role because photoreceptors, which are high in readily oxidized polyunsaturated fatty acids, are exposed to high oxygen tensions and photooxidation. Antioxidant vitamins decrease the risk of vision loss in some patients with...

متن کامل

Hepicidin and its role in iron metabolism.

Among various micro-nutrients, iron plays a major role not only for hemoglobin alone but also for oxidative metabolism and energy production. Hemoglobin functions as a chief oxygen carrier while other iron containing mitochondrial enzymes and respiratory chain proteins are involved in oxidative metabolism and release of energy from carbohydrates and fats. Iron salts have very low bioavailabilit...

متن کامل

Human mutation D157G in ferroportin leads to hepcidin-independent binding of Jak2 and ferroportin down-regulation.

Mutations in the iron exporter ferroportin (Fpn) result in iron overload in macrophages or hepatocytes depending upon the mutation. Patients with Fpn mutation D157G show high serum ferritin and normal to slightly elevated transferrin saturation. Here, we show that Fpn(D157G)-green fluorescent protein (GFP) is down-regulated independent of hepcidin, and that this down-regulation is due to the co...

متن کامل

RED CELLS, IRON, AND ERYTHROPOIESIS Human mutation D157G in ferroportin leads to hepcidin-independent binding of Jak2 and ferroportin down-regulation

Mutations in the iron exporter ferroportin (Fpn) result in iron overload in macrophages or hepatocytes depending upon the mutation. Patients with Fpn mutation D157G show high serum ferritin and normal to slightly elevated transferrin saturation. Here, we show that Fpn(D157G)–green fluorescent protein (GFP) is down-regulated independent of hepcidin, and that this downregulation is due to the con...

متن کامل

Expression of the iron-regulatory protein haemojuvelin in retina and its regulation during cytomegalovirus infection.

Haemochromatosis is a genetic disorder of iron overload resulting from loss-of-function mutations in genes coding for the iron-regulatory proteins HFE [HLA-like protein involved in iron (Fe) homoeostasis], transferrin receptor 2, ferroportin, hepcidin and HJV (haemojuvelin). Expression of the first four genes coding for these proteins in retina has been established. Here we report on the expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular vision

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2004